Del Bel Belluz, P., Cordes, A. W., Kristof, E. M., Kristof, P. V., Liblong, S. W. \& Oakley, R. T. (1989). J. Am. Chem. Soc. 111, 9276-9278.
Enraf-Nonius (1993). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Höfs, H.-U., Bats, J. W., Gleiter, R., Hartmann, G., Mews, R., EckertMaksič, M., Oberhammer, H. \& Sheldrick, G. M. (1985). Chem. Ber. 118, 3781-3804.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Acta Cryst. (1995). C51, 2404-2406

5-Cyanomethyl-3-(4-methylphenyl)-1phenylpyrazole

Sanjay K. Singh, Ajay Kumar, Archana Vats, Kirpal S. Bisht and Virinder S. Parmar

Department of Chemistry, University of Delhi, Delhi 110 007, India

Willam Errington
Department of Chemistry, University of Warwick, Coventry CV4 7AL, England
(Received 1 March 1995; accepted 13 June 1995)

Abstract

The title nitrile, 3-(4-methylphenyl)-1-phenylpyrazole-5acetonitrile, $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3}$, is one of the products obtained from the reaction of 3-cyano-6-(4-methylphenyl)-4-methylthio-2-oxo- 2 H -pyran with phenylhydrazine. The asymmetric unit contains two almost identical molecules differing only in the orientations of the phenyl and methylphenyl groups with respect to the planar pyrazole nucleus.

Comment

Owing to the widespread applications of pyrazole derivatives in medicinal, agricultural and synthetic chemistry (Kurowski, Dunky \& Geddawi, 1986; Rosiere \& Grossman, 1951; Seki, Watanabe \& Suga, 1988; Chauhan, Singh \& Chatterjee, 1993), we have synthesized a large number of novel compounds containing the pyrazole nucleus. One of our compounds, (1), showed significant anti-invasive activity against solid tumours. In order to establish the structure-activity relationship, several analogues of (1), including the title compound, (4), have been synthesized.

(1) $R=\mathrm{H}$
(5) $R=\mathrm{C}_{6} \mathrm{H}_{5}$

(3)

(2)

(4)

The reaction of 3-cyano-6-(4-methylphenyl)-4-methyl-thio-2-oxo- 2 H -pyran, (2), with phenylhydrazine produced two N-phenylpyrazoles. One of these was unequivocally identified as (3) from a detailed analysis of its spectral data. However, the position of the phenyl ring in the second compound remained unclear; that is, the compound was either (4) or (5). This X-ray investigation was undertaken to remove this ambiguity.
The asymmetric unit contains two molecules of (4), one of which is illustrated in Fig. 1. The corresponding bond lengths for these two molecules are the same within experimental error and in each case the pyrazole nucleus is flat. The main difference between these molecules is in the orientation of the peripheral aromatic groups relative to the plane of the pyrazole nucleus. In the first molecule the phenyl and methylphenyl groups are inclined at angles of 59.5 (1) and 15.7 (2) ${ }^{\circ}$, respectively, relative to the plane of the pyrazole ring; the corresponding values for the second molecule are $51.8(1)$ and $17.1(2)^{\circ}$. All of the bond lengths and angles are unexceptional; specifically the cyanide group is essentially linear with an average $\mathrm{C}-\mathrm{C}-\mathrm{N}$ angle of $179.3(5)^{\circ}$. There are no unusual intermolecular interactions.

Fig. 1. View of one molecule showing the atomic numbering. Displacement ellipsoids are drawn at the 30% probability level. The second molecule has an analogous numbering scheme.

Experimental

3-Cyano-6-(4-methylphenyl)-4-methylthio-2-oxo-2H-pyran (2) $(2.57 \mathrm{~g}, 0.01 \mathrm{~mol})$ was suspended in methanol (50 ml) and phenylhydrazine ($1.9 \mathrm{ml}, 0.02 \mathrm{~mol}$) was added. The reaction mixture was refluxed for 30 min , cooled and crushed ice was then added. The white solid that precipitated was purified by column chromatography on silica gel using petrol-ethyl acetate (9:1) as eluant; white crystals of (4) were obtained ($1.23 \mathrm{~g}, 45 \%$), m.p. 391 K .

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3}$
$M_{r}=273.33$
Monoclinic
$P 2_{1} / c$
$a=30.061$ (14) \AA
$b=7.218$ (4) \AA
$c=14.283(8) \AA$
$\beta=103.26(4)^{\circ}$
$V=3016.5(28) \AA^{3}$
$Z=8$
$D_{x}=1.204 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Siemens P3R3 diffractometer $\omega-2 \theta$ scans
Absorption correction: none
4924 measured reflections
3948 independent reflections
2530 observed reflections
$[I>2 \sigma(I)]$
$R_{\text {int }}=0.0486$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0614$
$w R\left(F^{2}\right)=0.1940$
$S=1.035$
3923 reflections
382 parameters
H atoms riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0682 P)^{2}\right.$
$+1.4282 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.478$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 30 reflections
$\theta=9-10^{\circ}$
$\mu=0.073 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block
$0.49 \times 0.34 \times 0.19 \mathrm{~mm}$ White
$\theta_{\text {max }}=22.55^{\circ}$
$h=-32 \rightarrow 31$
$k=-7 \rightarrow 1$
$l=0 \rightarrow 15$
3 standard reflections
monitored every 200 reflections
intensity decay: none
$\Delta \rho_{\text {max }}=0.184 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.171 \mathrm{e} \AA^{-3}$
Extinction correction:
SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.0057 (8)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i} . \mathrm{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
N11	0.13424 (9)	0.3707 (4)	0.4400 (2)	0.0499 (8)
N12	0.14533 (10)	0.2307 (4)	0.5037 (2)	0.0524 (8)
N13	-0.00090 (15)	0.3809 (6)	0.2029 (3)	0.1035 (15)
N21	0.36526 (10)	0.6432 (4)	0.8125 (2)	0.0529 (8)
N22	0.35529 (10)	0.7881 (5)	0.8643 (2)	0.0581 (8)
N23	0.50153 (15)	0.6167 (6)	0.7088 (3)	0.0998 (14)
C11	0.1091 (2)	-0.5376 (6)	0.7171 (3)	0.0895 (15)

C12	$0.10702(15)$	$-0.3565(6)$	$0.6633(3)$	$0.0604(11)$
C13	$0.06945(14)$	$-0.3061(6)$	$0.5934(3)$	$0.0645(11)$
C14	$0.06786(13)$	$-0.1429(5)$	$0.5427(3)$	$0.0565(10)$
C15	$0.10487(11)$	$-0.0216(5)$	$0.5608(2)$	$0.0485(9)$
C16	$0.14242(13)$	$-0.0704(5)$	$0.6331(3)$	$0.0583(10)$
C17	$0.14337(14)$	$-0.2338(6)$	$0.6827(3)$	$0.0625(11)$
C18	$0.10576(12)$	$0.1434(5)$	$0.5023(2)$	$0.0465(9)$
C19	$0.06988(12)$	$0.2305(5)$	$0.4368(2)$	$0.0509(9)$
C110	$0.08885(12)$	$0.3735(5)$	$0.3986(2)$	$0.0506(9)$
C111	$0.06871(12)$	$0.5140(5)$	$0.3237(3)$	$0.0630(11)$
C112	$0.02988(15)$	$0.4401(6)$	$0.2559(3)$	$0.0659(11)$
C113	$0.16927(11)$	$0.4959(5)$	$0.4269(2)$	$0.0459(9)$
C114	$0.20692(13)$	$0.4297(6)$	$0.3977(3)$	$0.0654(11)$
C115	$0.24080(14)$	$0.5545(8)$	$0.3890(3)$	$0.0765(13)$
C116	$0.23778(15)$	$0.7370(8)$	$0.4110(3)$	$0.0773(13)$
C117	$0.20025(14)$	$0.7995(6)$	$0.4391(3)$	$0.0678(12)$
C118	$0.16555(12)$	$0.6794(5)$	$0.4466(3)$	$0.0560(10)$
C21	$0.3959(2)$	$1.5539(7)$	$1.1101(3)$	$0.101(2)$
C22	$0.3965(2)$	$1.3740(6)$	$1.0580(3)$	$0.0687(12)$
C23	$0.36009(15)$	$1.2526(7)$	$1.0438(3)$	$0.0718(12)$
C24	$0.36057(13)$	$1.0874(6)$	$0.9968(3)$	$0.0636(11)$
C25	$0.39729(12)$	$1.0374(5)$	$0.9587(2)$	$0.0510(9)$
C26	$0.43414(14)$	$1.1573(6)$	$0.9740(3)$	$0.0617(11)$
C27	$0.43370(15)$	$1.3224(6)$	$1.0230(3)$	$0.0692(12)$
C28	$0.39579(12)$	$0.8713(5)$	$0.9006(2)$	$0.0510(9)$
C29	$0.43082(12)$	$0.7777(5)$	$0.8703(2)$	$0.0531(10)$
C210	$0.41085(12)$	$0.6350(5)$	$0.8151(2)$	$0.0505(9)$
C211	$0.43012(12)$	$0.4922(6)$	$0.7594(3)$	$0.0635(11)$
C212	$0.47009(15)$	$0.5621(6)$	$0.7303(3)$	$0.0662(11)$
C213	$0.32915(12)$	$0.5263(6)$	$0.7639(2)$	$0.0506(9)$
C214	$0.29095(13)$	$0.6053(6)$	$0.7057(3)$	$0.0703(12)$
C215	$0.25560(15)$	$0.4919(9)$	$0.6609(3)$	$0.090(2)$
C216	$0.2583(2)$	$0.3064(9)$	$0.6723(4)$	$0.091(2)$
C217	$0.2964(2)$	$0.2278(7)$	$0.7305(3)$	$0.0845(14)$
C218	$0.33191(14)$	$0.3408(6)$	$0.7771(3)$	$0.0670(11)$

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{N} 11-\mathrm{N} 12$	$1.350(4)$	$\mathrm{C} 15-\mathrm{C} 18$	$1.459(5)$
$\mathrm{N} 11-\mathrm{C} 110$	$1.357(4)$	$\mathrm{C} 18-\mathrm{C} 19$	$1.404(5)$
$\mathrm{N} 11-\mathrm{C} 113$	$1.432(4)$	$\mathrm{C} 19-\mathrm{C} 110$	$1.353(5)$
$\mathrm{N} 12-\mathrm{C} 18$	$1.342(4)$	$\mathrm{C} 110-\mathrm{C} 111$	$1.497(5)$
$\mathrm{N} 13-\mathrm{C} 112$	$1.135(5)$	$\mathrm{C} 111-\mathrm{C} 112$	$1.438(6)$
$\mathrm{N} 21-\mathrm{N} 22$	$1.354(4)$	$\mathrm{C} 25-\mathrm{C} 28$	$1.453(5)$
$\mathrm{N} 21-\mathrm{C} 210$	$1.364(4)$	$\mathrm{C} 28-\mathrm{C} 29$	$1.401(5)$
$\mathrm{N} 21-\mathrm{C} 213$	$1.424(4)$	$\mathrm{C} 29-\mathrm{C} 210$	$1.351(5)$
$\mathrm{N} 22-\mathrm{C} 28$	$1.349(4)$	$\mathrm{C} 210-\mathrm{C} 211$	$1.498(5)$
$\mathrm{N} 23-\mathrm{C} 212$	$1.129(5)$	$\mathrm{C} 211-\mathrm{C} 212$	$1.449(6)$
$\mathrm{N} 12-\mathrm{N} 11-\mathrm{C} 110$	$111.9(3)$	$\mathrm{C} 19-\mathrm{C} 110-\mathrm{N} 11$	$106.7(3)$
$\mathrm{N} 12-\mathrm{N} 11-\mathrm{C} 113$	$119.0(3)$	$\mathrm{C} 19-\mathrm{C} 110-\mathrm{C} 111$	$131.8(3)$
$\mathrm{C} 110-\mathrm{N} 11-\mathrm{C} 113$	$129.1(3)$	$\mathrm{N} 11-\mathrm{C} 110-\mathrm{C} 111$	$121.5(3)$
$\mathrm{C} 18-\mathrm{N} 12-\mathrm{N} 11$	$105.1(3)$	$\mathrm{N} 13-\mathrm{C} 112-\mathrm{C} 111$	$179.4(5)$
$\mathrm{N} 22-\mathrm{N} 21-\mathrm{C} 210$	$111.4(3)$	$\mathrm{N} 22-\mathrm{C} 28-\mathrm{C} 29$	$110.1(3)$
$\mathrm{N} 22-\mathrm{N} 21-\mathrm{C} 213$	$119.0(3)$	$\mathrm{N} 22-\mathrm{C} 28-\mathrm{C} 25$	$119.6(3)$
$\mathrm{C} 210-\mathrm{N} 21-\mathrm{C} 213$	$129.5(3)$	$\mathrm{C} 29-\mathrm{C} 28-\mathrm{C} 25$	$130.3(3)$
$\mathrm{C} 28-\mathrm{N} 22-\mathrm{N} 21$	$105.1(3)$	$\mathrm{C} 210-\mathrm{C} 29-\mathrm{C} 28$	$106.4(3)$
$\mathrm{N} 12-\mathrm{C} 18-\mathrm{C} 19$	$110.0(3)$	$\mathrm{C} 29-\mathrm{C} 210-\mathrm{N} 21$	$107.0(3)$
$\mathrm{N} 12-\mathrm{C} 18-\mathrm{C} 15$	$120.5(3)$	$\mathrm{C} 29-\mathrm{C} 210-\mathrm{C} 211$	$131.3(3)$
$\mathrm{C} 19-\mathrm{C} 18-\mathrm{C} 15$	$129.4(3)$	$\mathrm{N} 21-\mathrm{C} 210-\mathrm{C} 211$	$121.6(3)$
$\mathrm{C} 110-\mathrm{C} 19-\mathrm{C} 18$	$106.3(3)$	$\mathrm{N} 23-\mathrm{C} 212-\mathrm{C} 211$	$179.1(5)$

The phenyl rings were restrained to be flat with twofold rotational symmetry. H atoms were added at calculated positions and refined using a riding model. Anisotropic displacement parameters were used for all non-H atoms; each H atom was given an isotropic displacement parameter equal to 1.2 (1.5 for methyl H atoms) times the equivalent isotropic displacement parameter of the C atom to which it is attached.

Data collection: Siemens P3R3 system. Cell refinement: Siemens P3R3 system. Data reduction: SHELXTLPlus (Sheldrick, 1991). Program(s) used to solve structure: SHELXTL-Plus. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993).

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: CF1012). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Chauhan, P. M. S., Singh, S. \& Chatterjee, R. K. (1993). Indian J. Chem. 32B, 858-861.
Kurowski, M., Dunky, A. \& Geddawi, M. (1986). Eur. J. Clin. Pharmacol. 31, 307-311.
Rosiere, C. E. \& Grossman, M. I. (1951). Science, 113, 651-651.
Seki, K., Watanabe, T. \& Suga, T. (1988). Chem. Pharm. Bull. (Jpn), 36, 1117-1121.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 2406-2407

3-[3-(4-Bromophenyl)-1-phenylpyrazol-5-yl]-2H-1-benzopyran-2-one

Sanjay K. Singh, Naresh Kumar, Sanjay Malhotra,
Kirpal S. Bisht and Virinder S. Parmar
Department of Chemistry, University of Delhi, Delhi 110 007, India

William Errington
Department of Chemistry, University of Warwick, Coventry CV4 7AL, England
(Received 23 February 1995; accepted 6 June 1995)

Abstract

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2}$, the angles formed by the planes of the bromophenyl, phenyl and coumarin groups with the plane of the pyrazole nucleus are $19.3,38.8$ and 65.6°, respectively. The absolute structure has been determined.

Comment

Many compounds containing the pyrazole nucleus are used as drugs, insecticides and pesticides (Weily \& Wiley, 1964; Taki, Meki, Fujimoto, Umeda \& Imahase, 1992). Consequently, we have synthesized several diphenyl-substituted pyrazolylacetonitriles [e.g. compound (1)] and have established that such compounds have strong anti-invasive activity against solid tumours. The presence of a reactive methylene group in these pyrazole derivatives can be used in various ways to syn-
thesize compounds containing the pyrazole moiety and with the potential for biological activity.
In this investigation, salicylaldehyde was condensed with the pyrazole (1) to produce the coumarin derivative (2). The point of attachment of the coumarin group to the pyrazole nucleus was confirmed using ${ }^{1} \mathrm{H}$ NMR and mass spectrometry. The aim of this X-ray investigation was to obtain further structural information regarding the orientations of the groups attached to the pyrazole nucleus.

(1)

(2)

The molecular structure, as determined in this investigation, is illustrated in Fig. 1. The pyrazole nucleus is flat within experimental error, and the planar peripheral phenyl and bromophenyl groups are inclined with respect to the pyrazole plane at angles of 38.8 (6) and $19.3(7)^{\circ}$, respectively. The coumarin unit is not exactly flat, but the least-squares plane through the ring atoms, with r.m.s. deviation $0.023 \AA$, is inclined at an angle of $65.6(4)^{\circ}$ to the plane of the pyrazole nucleus.

Fig. 1. View of the molecule showing the atomic numbering. Displacement ellipsoids are drawn at the 30% probability level.

The propeller-like orientations of the peripheral groups give a chiral molecule. The observed value of the absolute structure parameter (Flack, 1983) is -0.02 (3). This is within one e.s.d. of zero and its e.s.d. is also relatively small; thus it provides strong evidence that the absolute structure has been assigned correctly. All bond lengths and angles are unexceptional. The generally low precision associated with the determination is due to poor crystal quality.

Experimental

Salicylaldehyde ($0.13 \mathrm{ml}, 0.0012 \mathrm{~mol}$) was added to a solution of (1) $(0.34 \mathrm{~g}, 0.001 \mathrm{~mol})$ in ethanol $(20 \mathrm{ml})$. After the

